Name: \qquad

Middle School: \qquad

Welcome to your first KCHS math class!

For this coming school year, you are enrolled in Algebra 1. This packet is meant to review material that you did in Pre-Algebra, as well as prepare you for your Algebra 1 class here at KCHS.

The expectations are as follows:

- Packet is to be complete by the first week of school.
- ALL work must be shown throughout the packet.
- Packet will count as a participation grade in Quarter 1
- Test on packet will be given within first two weeks of being at school.

We are so excited to have you here at Catholic and look forward to meeting you! Go IRISH!

TABLE OF CONTENTS:

Multiplication Practice 3
Adding and Subtracting with Negatives 4
Multiplying and Dividing with Negatives 5
Order of Operations 6-8
Rounding 9-10
Evaluating Expressions 11-12
Combining Like Terms 13-14
Adding and Subtracting Fractions 15-17
Multiplying and Dividing Fractions 18-19
One-Step Equations 20-21
Verbal Expressions 22-24
Coordinate Planes 25-28
Word Problems $29-30$

NO CALCULATOR -
You will not be allowed a calculator on a test either.

$7 \times 5=$	$11 \times 10=$	$5 \times 1=$	$8 \times 8=$
$11 \times 6=$	$4 \times 12=$	$6 \times 12=$	$3 \times 7=$
$7 \times 9=$	$3 \times 6=$	$12 \times 11=$	$5 \times 9=$
$4 \times 4=$	$6 \times 5=$	$1 \times 8=$	$5 \times 7=$
$10 \times 5=$	$9 \times 12=$	$10 \times 11=$	$1 \times 7=$
$11 \times 5=$	$5 \times 2=$	$7 \times 4=$	$1 \times 12=$
$3 \times 9=$	$9 \times 7=$	$8 \times 12=$	$5 \times 4=$
$2 \times 11=$	$1 \times 9=$	$5 \times 6=$	$9 \times 4=$
$3 \times 9=$	$9 \times 9=$	$7 \times 7=$	$10 \times 6=$
$2 \times 11=$	$9 \times 6=$	$10 \times 10=$	$12 \times 4=$
$6 \times 3=$	$5 \times 3=$	$5 \times 5=$	$3 \times 1=$
$3 \times 5=$	$2 \times 5=$	$12 \times 10=$	$6 \times 11=$
$12 \times 12=$	$4 \times 11=$	$11 \times 4=$	$9 \times 2=$
$12 \times 8=$	$1 \times 6=$	$6 \times 6=$	$4 \times 9=$
$6 \times 12=$	$10 \times 9=$	$5 \times 9=$	$3 \times 3=$
$7 \times 8=$	$9 \times 10=$	$11 \times 11=$	$8 \times 4=$
$3 \times 2=$	$7 \times 11=$	$12 \times 3=$	$8 \times 6=$
$7 \times 11=$	$1 \times 11=$	$4 \times 2=$	$5 \times 8=$
$2 \times 12=$	$8 \times 3=$	$11 \times 3=$	$10 \times 1=$
$12 \times 7=$	$2 \times 8=$	$4 \times 5=$	$6 \times 8=$
$7 \times 6=$	$10 \times 8=$	$11 \times 2=$	$6 \times 10=$
$2 \times 6=$	$12 \times 1=$	$3 \times 8=$	$6 \times 4=$
$7 \times 2=$	$10 \times 5=$	$8 \times 9=$	$8 \times 1=$
$8 \times 1=$	$9 \times 11=$	$12 \times 9=$	$12 \times 2=$

Adding and Subtracting with Negatives:
NO CALCULATOR -
You will not be allowed a calculator on a test either.

$\begin{array}{r} 5+(-3)= \\ 5-(-3)= \\ 2+(-4)= \\ 2-(-4)= \\ (-5)+3= \\ (-5)-3= \\ (-3)+6= \\ (-3)-6= \\ 2+(-5)= \\ 2-(-5)= \\ 7+(-1)= \\ 7-(-1)= \\ 1+(-6)= \\ 1-(-6)= \\ (-4)+(-5)= \\ (-4)-(-5)= \\ (-3)-(-7)= \\ (-3)+(-7)= \\ 4+(-6)= \\ 4-(-6)= \end{array}$	$\begin{gathered} 3+(-4)= \\ (-4)-5= \\ (-6)+5= \\ 2-(-6)= \\ 3+(-5)= \\ 5-(-3)= \\ 8+(-7)= \\ (-3)-(-4)= \\ 7+(-10)= \\ (-1)-7= \\ (-6)+11= \\ (-8)-(-10)= \\ (-10)+7= \\ 8-12= \\ 4+(-11)= \\ (-6)-3= \\ (-5)+(-4)= \\ (-2)-(-10)= \\ (-8)+15= \\ (-7)-(-12)= \end{gathered}$

When you multiply/divide to negative numbers you get a positive or negative number.

When you multiply/divide a negative number by a positive number you get a positive or negative number.

NO CALCULATOR -

You will not be allowed a calculator on a test either.
B) Work out the multiple and division questions.

$$
\begin{array}{lr}
(-8) \times 4= & (-6) \times(-8)= \\
(-50) \div 10= & (-32) \div(-4)= \\
5 \times(-9)= & (-12) \times 3= \\
21 \div(-7)= & 0 \div(-9)= \\
(-7) \times(-5)= & (-8) \times(-7) \\
(-18) \div(-6)= & (-6) \times 12= \\
(-8) \times 10= & 48 \div(-6)= \\
36 \div(-3)= & (-80) \div 4= \\
(-5) \times 0= & (-15) \times(-10)= \\
(-42) \div 6= & 108 \div(-9)=
\end{array}
$$

A) Fill in the missing numbers.
$(-8) \times$ \qquad $=-36$

$$
44 \div \ldots=-11
$$

$$
\begin{gathered}
\times 5=-55 \\
-\quad \div(-7)=4
\end{gathered}
$$

$(-3) \times$ \qquad $=27$
\qquad $\times(-9)=-63$
\ldots $\div 11=-8$

$$
(-48) \div \ldots=-4
$$

Order of Operations:
NO CALCULATOR -
You will not be allowed a calculator on a test either.

It is important to not have different results for the same math problems. To avoid this issue, mathematicians came up with an order of operations that all math problems must follow.

An easy way to remember these steps is to use an acronym by PEMDAS.

Many people know this acronym as:
PLEASE, EXCUSE, MY, DEAR, AUNT, SALLY
P: Parenthesis (or any brackets)

E: Exponents

M: Multiplication

D: Division
A: Addition
S: Subtraction

Think of MD and AS as buddies:
Multiplication/division goes from left to right.
Addition/Subtraction goes from left to right.

EXAMPLES:

$$
\begin{gathered}
2-3^{2}+(6+3 \times 2) \\
2-3^{2}+(6+6) \\
2-3^{2}+12 \\
2-9+12 \\
-7+12 \\
5
\end{gathered}
$$

$$
\begin{gathered}
-7+4+\left(2^{3}-8 \div-4\right) \\
-7+4+(8-8 \div-4) \\
-7+4+(8--2) \\
-7+4+10 \\
-3+10
\end{gathered}
$$

7

Try them on your own:
WRITE OUT EACH STEP YOU TAKE (IN ORDER ACCORDING TO PEMDAS) DO NOT just write a final answer.

1. $6+4-2 \times 3=$
2. $15 \div 3 \times 5-4=$
3. $20-7 \times 4=$
4. $50-(17+8)=$
5. $10 \times\left(3-6^{2}\right)+8 \div 2=$
6. $(-2) \times 3+5-7=$
7. $(12-4) \div 8=$
8. $12 \div 3-6 \times 2-8 \div 4=$
9. $18-4^{2}+7=$
10. $3(2+7)-9 \times 7=$

Step 1: Underline the place value to which you want to round.
Step 2: Look to the number of the right of your underlined number. Decide if that number is 5 OR MORE.

Step 3: If the number is 5 OR MORE, the underlined number will go up 1. If the number is LESS THAN 5, the number stays the same.

Decimal Place Value Chart									
V 0 0 0 0 曷 0			$\stackrel{\text { ص. }}{\sim}$	$\begin{gathered} \check{0} 0 \\ \hline \end{gathered}$	-	$\underset{\sim}{\text { En }}$			
		7	8	6	.	4	3	2	

EXAMPLES:

Round the following number to the tenth decimal place.

$$
23.1246
$$

1. Underline the tenth decimal place (1)
2. Look at the number to the right
a. It is 2 , which is less than 5 .

3 . This means the 1 stays the same.
Answer:
23.1

Round the following number to the tenth decimal place.
64.2685

1. Underline the tenth decimal place (2)
2. Look at the number to the right
a. It is 6 , which is more than 5
3. This means the 2 goes up to 3 ..

Answer:
64.3

1. 18.6231
2. 0.2653
3. 25.0153
4. 100.9185

Round the following numbers to the hundredth place:

1. 3.1925
2. 19.9816

$\underline{4}$ or less LET IT REST....
3. 18.9862
4. 0.6701

Example \#1:

Evaluate the expression when $x=5$
Directions: Rewrite each expression substituting the 5 for the x.
a. $5 x=5(5)=25$
b. $-2 x=-2(5)=-10$
c. $5 x-15=5(5)-15=25-15=10$

Example \#2

Evaluate the expression when $x=3$ and $y=4$
Directions: Rewrite each expression substituting the 3 for the x and the 4 for the y.
a. $x+y=3+4=7$
b. $2 x y=2(3)(4)=24$
c. $2(x+y)=2(3+4)=2(7)=14$

Expression	Substitute and Simplify (Show your Work)	Final Answer
$3 x$		
$2(x+z)-y$		
$y+4$		
$5 z-6$		
$x y+z$		
$2 x+3 y-z$		
$5 x-(y+2 z)$		
$\frac{x y}{2}$		
$2 x(y+z)$		
$5 z-(y-x)$		
$4 x+2 y-z$		
$\frac{y z}{2}$		

What is a term?	The parts of an algebraic expression that are separated by an addition or subtraction sign are called terms.
What is a like term?	Terms with the same variable factors are called like terms. $2 n$ and $3 n$ are like terms, but $4 x$ and $3 y$ are NOT like terms because their variable factors x and y are different.

Examples:

Combine ALL like terms to simplify the expression completely.

$$
x-7 x=-6 x
$$

How to Combine Like Terms

To Combine Like Terms, we add together items that are the same to make a simplified shorter list of items.

Consider the following family take-away order:

We can write this in Algebra as: $\mathbf{2 b}+\mathbf{f}+\mathbf{d}+\mathbf{3 b}+\mathbf{2 f}+\mathbf{2 d}$
If we combine like items, we get a simplified list as follows:
$5 b+3 f+3 d$

릅․․

$6 n+5 n$	$25 b+15 b$
$x-5 x$	$3 n-2 n+5-6$
$5 r+7 r-6$	$4 t-11 y+6 t$
$2 m+3 n-5 m+6 n$	$6 p-4 f+3 b+7 p+7 f-2 b$
$5 p-11 p+6 r$	

Kevin, Rachel, and Logan all went to the ice cream shop together.

Kevin got three scoops of ice cream, two toppings, and one soda.

Rachel got one scoop of ice cream, three toppings, and no soda. Logan got two scoops of ice cream, no toppings, and no soda.

1. Write an expression that show how many scoops (s), how many toppings (t), and how many drinks (d) they all got together.
2. Combine all the like terms to simplify the expression.

To Add/Subtract Fractions we need: COMMON DEMONIMATOR
Does your problem have common denominator?

Is you fraction in simplest form?

YES

You're Done! (:

1. Simplify your
 fraction by dividing both numbers by a common factor.
2.

$$
\frac{1}{3}+\frac{5}{3}=\frac{6}{3}=\frac{2}{1}=2
$$

2.
3.

4.

$\frac{1}{3}+\frac{4}{7}=\frac{7}{21}+\frac{12}{21}=\frac{19}{21}$

This is in simplest form. This is your final answer. Do NOT put your answer into a decimal or a mixed number.

Not all of us can
do great things.
But we can do small things
with great love.
-Mother Teresa

$$
\text { 1. } \frac{1}{3}+\frac{2}{7}=
$$

$$
\text { 2. } \frac{9}{20}-\frac{5}{20}=
$$

$$
\text { 3. } \frac{13}{25}+\frac{6}{25}=
$$

$$
\text { 4. } \frac{1}{3}+\frac{1}{2}=
$$

$$
\text { 5. } \frac{3}{4}+\frac{1}{8}=
$$

$$
\text { 6. } \frac{5}{12}-\frac{3}{15}=
$$

$$
\text { 7. } \frac{4}{9}+\frac{13}{15}=
$$

Multiplying and Dividing Fractions:

It's actually easier than addition/subtraction!

1. Multiply the two numerators together.
2. Multiply the two denominators together.
3. Simplify the fraction is necessary!

Examples:

1. $\frac{1}{3} \times \frac{6}{7}=\frac{1 \times 6}{3 \times 7}=\frac{6}{14}=\frac{3}{7}$

Dividing Fractions has 1 extra step:

1. KEEP CHANGE FLIP

2. Multiply the two numerators together.
3. Multiply the two denominators together.
4. Simplify the fraction is necessary!

What is Keep Change Flip?
Keep the first fraction
Change the sign

Examples:

1. $\frac{1}{3} \div \frac{8}{3}=\frac{1}{3} \times \frac{3}{8}=\frac{1 \times 3}{3 \times 8}=\frac{3}{24}=\frac{1}{8}$
2. $\frac{2}{7} \div \frac{8}{13}=\frac{2}{7} \times \frac{13}{8}=\frac{2 \times 13}{7 \times 8}=\frac{26}{56}=\frac{13}{28}$

$$
\text { 1. } \frac{1}{3} \times \frac{2}{5}=
$$

$$
\text { 2. } \frac{1}{3} \div \frac{5}{7}=
$$

$$
\text { 3. } \frac{7}{10} \times \frac{3}{8}=
$$

$$
\text { 4. } \frac{2}{3} \div \frac{3}{5}=
$$

$$
\text { 5. } \frac{3}{4} \times \frac{2}{8}=
$$

$$
\text { 6. } \frac{12}{7} \div \frac{3}{8}=
$$

$$
\text { 7. } \frac{1}{10} \times \frac{5}{7}=
$$

One-Step Equations:
How do we solve for a variable?
To solve an equation is to find the value of the variable. We solve equations by isolating the variable using opposite operations.

Inverse Operations:

Operation	Inverse
$\boldsymbol{+}$	-
-	$\boldsymbol{+}$
\mathbf{X}	\div
\div	\mathbf{X}

operations that undo each other.

 Addition \square Subtraction Subtraction \longmapsto Addition

Division \longmapsto Multiplication

Examples:

$-7 \quad-7$
$x=5$

$$
\frac{x}{4}=14
$$

$$
x=14 \times 4
$$

$$
x=56
$$

$$
\begin{gathered}
x+12=-4 \\
r-2=7 \\
-8=\frac{f}{3} \\
9 x=81 \\
t-22=4 \\
h+9=-12
\end{gathered}
$$

Keywords for Translations

Add	Subtract	Multiply	Divide	Inequalities	Variable	=
Plus	Decreased	Per	One-third	< is less than	A number	Same as
Sum	Smaller	For Every	Quotient	> is greater	Some	Equals
Longer than	Less than	For Each	Divided by	than	number	Is
Greater than	Difference	Triple	Each part	\leq is less than	Quantity	Total
Together	Reduced	Multiplied	Half as much	eq		Was
Total	Differ	Of	Split equally	\geq is greater than or equal		Result
Increased	Fewer	Times				Outcome
More than	Shorter than	Twice				Answer
In all	Minus	Double				
And	Diminished					

Examples:

1. The quotient of a number p and 12.
a. $p \div 12$
2. A number h is increased by 6
a. $h+6$
3. Twice a number r is 32
a. $2 r=32$
4. The quotient of a number p and 18
5. Six less than 5 times a number r
6. Three times a number s is 15
7. A number w is half of 16
8. Triple a number y is 3 less than 18
9. 6 times a number 4 decreased by 4
10. 12 less than the product of a number y and 12
11. 4 times a number added to 11

Matching: Put the letter of the algebraic expression that best matches the phrase.

1. Two more than a number
2. Two less than a number
3. Half of a number
4. Twice a number
5. Two decreased by a number
a. $2 x$
b. $x+2$
c. $x-2$
\qquad d. $2-x$
\qquad e. $\frac{x}{2}$

Careful! Pay attention to subtraction. The order makes a difference. Translate to an algebraic expression then reread to check!

Points in a plane are named using two numbers, called a coordinate pair. The first number is called the x-coordinate. The x-coordinate is positive if the point is to the right of the
 origin and negative if the point is to the left of the origin. The
second number is called the y-coordinate. The y-coordinate is positive if the point is above the origin and negative if the point is below the origin.

The $x-y$ plane is divided into four quadrants (four sections) as described below.

All points in Quadrant 1 have a positive x coordinate and a positive y coordinate $(+x,+y)$.

All points in Quadrant 2 have a negative x coordinate and a positive y coordinate $(-x,+y)$.
All points in Quadrant 3 have a negative x coordinate and a negative y coordinate $(-x,-y)$.
All points in Quadrant 4 have a positive x coordinate and a negative y coordinate ($+x,-y$).

Quadrant 2				
	Quadrant 1			
Quadrant 3				
	Quadrant 4			

Example:
Graph the following points.

1. $(3,2)$
2. $(7,-2)$
3. $(-4,-6)$
4. $(-3,5)$

Graph the following points on the coordinate plane.

Determine the coordinates for each point below:

Example: $(2,3)$

(,)

(,)

(,)

(,)

1. A video store charges a one-time membership fee of $\$ 12$ and $\$ 1.50$ per video game. If Peter rented three video games and is a member of the video store, how much did he spend?

Darell went to the mall and spent \$41. He bought several t-shirts that each cost \$12, and he bought 1 pair of socks for $\$ 5$. How many t-shirts did Darell buy?
3. Janet weighs 20 more pounds than Anna. If the sum of their weights is 250 pounds, how much does each girl weigh?

4. The current price of a school t-shirt is $\$ 10.58$. Next year the cost of a t-shirt will be $\$ 15.35$. How much will the t-shirt increase next year?
5. Sarah drove 3 hours more than Michael on their trip to Texas. If the trip took 37 hours, how long did Sarah and Michael each drive?

