**AP Calculus AB Summer Packet** 

Date:

Name:

Topics:

- I. Trigonometry
- II. Functions and their transformations V. Derivatives
- III. Exponentials and Logarithms

IV. Limits

This packet is due on the 1<sup>st</sup> day of school. You will be given a test within a few days.

I can provide links to recordings of my PreCalculus Honors class which you can use to review or learn for the first time the needed material. Email me at fletcher.williams@knoxvillecatholic.com to get them.

Assume all of the problems included are to be completed without a calculator.

# I. Trigonometry

\*Know your unit circle well. You should be able to calculate the following (idea: make a Quizlet and share it with others!):

- basic trig ratios, e.g.  $\sin 30^\circ$ ,  $\cos \pi$ ,  $\sec 0$ ,  $\tan 480^\circ$ ...

- basic inverse trig, e.g.  $\arcsin(1/2), \cos^{-1}0, \tan^{-1}1, \arccos(-\sqrt{2})...$  (be careful of restricted ranges!)

- 1. Be able to graph sinx, cosx, tanx, secx, cscx, cotx.
- 2. Graph one period of  $y = -2\cos\left(\frac{\pi}{4}x + \pi\right) 1$ . Label appropriately.

- 3. Solve the following equations on the interval  $0 \le \theta < 360^\circ, 0 \le x < 2\pi$ .
  - a.  $\cos 2x = \sin x$

b.  $\sin 2\theta = 2\sin \theta$ 

# **III. Functions and Their Graphs**

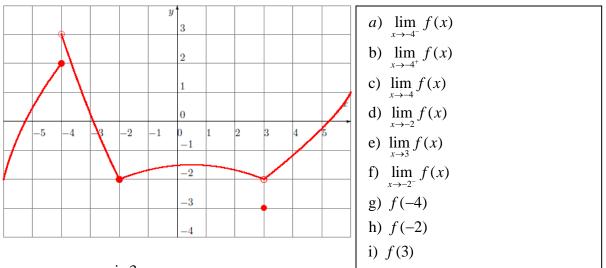
Be able to graph functions of the form  $f(x) = x^n$  and transformations where *n* is: 1) positive integer 2) negative integer 3) rational number

## **IV. Exponentials and Logarithms**

4. Simplify the following:

a. 
$$5^{\log_5 3}$$
  
b.  $\log_3 27^{\sqrt{2}}$   
c.  $\ln \frac{1}{e^3}$   
d.  $\log_6 \left(\frac{36}{6^{-10}}\right)$ 

5. Solve for *x* in terms of natural logs:  $e^{2x-1} = 3$ 


6. Solve for *t* in terms of log base 10:  $10^{5t} = 2$ 

7. Solve for x in terms of e:  $\ln x^2 = 8$ 

8. Combine the following into a single logarithmic expression:  $\frac{1}{3}\log_b x + \log_b y$ 

### VI. Limits

9. Write down the definition of a limit. (That is, what is formally required for the statement  $\lim_{x \to a} f(x) = L$  to be true. Think  $\varepsilon$  and  $\delta$ ...)



10. Calculate the indicated limits/function values based on the graph:

11. Given that  $\frac{\sin 3x}{x} \le f(x) \le x^2 + 3$  on the interval [-5, 5], determine  $\lim_{x \to 0} f(x)$  and justify your answer.

### VII. Derivatives

12. Compute derivatives of the following:

a. 
$$v(t) = t^5 - 4t + \sqrt{t} - 3 - \frac{1}{t^2}$$

<u>Know these derivative rules by heart:</u> Derivative of a constant, Power Rule, Constant Multiple Rule, Sum Rule, Product Rule, Quotient Rule, sinx, cosx

b. 
$$y = \sqrt{1 + x^2}$$
 d.  $f(x) = (2x^2 - 3)^4 (2x + 4)^3$ 

c. 
$$f(x) = \frac{\sin x - \cos x}{\sin x + \cos x}$$

e. 
$$g(x) = \left(\frac{x^2 - 1}{x^2 + 1}\right)^2$$

13. Write down the equation of the line tangent to  $y = \sqrt[3]{x}$  at x = -8.